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The role of hypoxia inducible factor 1 (HIF-1) in hypoxia
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Apoptosis can be induced in response to hypoxia. The
severity of hypoxia determines whether cells become
apoptotic or adapt to hypoxia and survive. A hypoxic
environment devoid of nutrients prevents the cell
undergoing energy dependent apoptosis and cells become
necrotic. Apoptosis regulatory proteins are delicately
balanced. In solid tumours, hypoxia is a common
phenomenon. Cells adapt to this environmental stress, so
that after repeated periods of hypoxia, selection for
resistance to hypoxia induced apoptosis occurs. These
resistant tumours probably have a more aggressive
phenotype and may have decreased responsiveness to
treatment. The key regulator of this process, hypoxia
inducible factor 1 (HIF-1), can initiate apoptosis by
inducing high concentrations of proapoptotic proteins,
such as BNIP3, and can cause stabilisation of p53.
However, during hypoxia, antiapoptotic proteins, such as
IAP-2, can be induced, whereas the proapoptotic protein
Bax can be downregulated. During hypoxia, an intricate
balance exists between factors that induce or counteract
apoptosis, or even stimulate proliferation. Understanding
the regulation of apoptosis during hypoxia and the
mechanisms of resistance to apoptosis might lead to more
specific treatments for solid tumours.
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M
ammalian cells have developed a range of
adaptations to survive acute and even
prolonged hypoxia. Hypoxia reduces the

ability of a cell to maintain its energy level,
because less ATP will be obtained from glycolysis
than from oxidative phosphorylation. Cells will
adapt by activating the expression of genes
involved in metabolic adaptation, such as those
involved in glycolysis. In addition, cell prolifera-
tion and angiogenesis will be stimulated, enabling
better oxygenation of the tissue.1 Severe hypoxia
causes a high mutation rate, resulting in point
mutations, which may be explained by reduced
DNA mismatch repair activity resulting from
decreased MLH1 and PMS2 concentrations, which
are caused by hypoxia.2 In addition, hypoxia
induces genetic instability by the induction of
fragile sites causing gene amplification.3–5 There-
fore, during severe hypoxia or anoxia, the cell
initiates a cascade of events that leads to apoptotic
cell death, thereby preventing the accumulation of
cells with hypoxia induced mutations.6

Hypoxia is a common phenomenon in solid
tumours because impaired vascular function
results in an inadequate blood supply. The supply
of oxygen and nutrients is severely hampered by
the malformed vessels. The combination of a lack
of oxygen and a lack of nutrients causes energy
deprivation. Low ATP concentrations in hypoxic
tumour cells disable the apoptotic cascade and
induce cell death by necrosis.7 Severe hypoxia
in the presence of energy stimulates cells to
undergo apoptosis, whereas oxygen levels above
0.5% prevent cell death.8 9 Therefore, tight
regulation of cellular responses to the micro-
environment is needed.

‘‘During severe hypoxia or anoxia, the cell
initiates a cascade of events that leads to
apoptotic cell death, thereby preventing the
accumulation of cells with hypoxia induced
mutations’’

Cells in rapidly growing tumours are inter-
mittently, or sometimes constantly, exposed to
hypoxic conditions. In severe or prolonged
hypoxia, cells will initiate the process of pro-
grammed cell death. Some cells may adapt to the
environmental stress, escape necrosis and apop-
tosis, and survive. These selected hypoxia resis-
tant cells probably have a more aggressive
phenotype.10 Such tumour cells with a reduced
sensitivity to apoptosis will be less responsive to
anticancer treatment.11

The key regulator of the hypoxia response is
the hypoxia inducible factor 1 (HIF-1). HIF-1 has
a complex role. HIF-1 can induce apoptosis,12 13

prevent cell death, or even stimulate cell pro-
liferation.14 This review will focus on the delicate
balance between the adaptation of the cell to the
hypoxic environment and self sacrifice of the cell
by apoptosis, by which the accumulation of
mutated cells is prevented.

HYPOXIA INDUCIBLE FACTOR 1
HIF-1 is involved in embryonic development,15–17

tumour growth, metastasis,18 19 and apoptosis.12 20

Abbreviations: Apaf-1, apoptotic protease activating
factor-1; BNIP3, BCL-2/adenovirus E1B 19 kDa
interacting protein 3; ES, embryonic stem; HIF-1, hypoxia
inducible factor 1; HRE, hypoxia response element; IAP-2,
inhibitor of apoptosis protein 2; IRES, internal ribosome
entry site; Jab1, jun activation domain binding protein 1;
JNK, c-Jun NH2 terminal kinase; NF-kB, nuclear factor
kB; ODD, oxygen dependent degradation; PI3K,
phosphoinositide-3 kinase; ROS, reactive oxygen species;
SAPK, stress activated protein kinase; VHL, von Hippel
Lindau
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HIF-1 is a heterodimer composed of the rate limiting factor
HIF1a and the constitutively expressed HIF-1b.21 HIF-1b is
also called the aryl hydrocarbon receptor nuclear transloca-
tor. It heterodimerises with several other factors, such as the
Ahr transcription factor.22 HIF-1a is induced by hypoxia, and
also by oncogenes, such as HER-2/neu, v-src, and ras, as
reviewed by Semenza.23 The induction of HIF-1 by hypoxia
takes place at the protein level, because HIF-1a mRNA
expression remains unchanged. During normoxia, HIF-1a
protein is expressed but is unstable. Rapid degradation of
HIF-1 by the proteasome results from its ubiquitination by
the product of the Von Hippel Lindau tumour suppressor
gene (VHL). In patients with loss of the VHL gene, HIF-1a
and HIF-1 dependent genes, such as angiogenesis factors, are
also expressed during normoxia.24 Vascular tumours are often
seen in these patients, who suffer from the von Hippel Lindau
syndrome. The binding of HIF-1a to pVHL requires a
modification of HIF-1a by proline hydroxylases in the oxygen
dependent degradation domain (ODD) within the HIF-1a
protein.25–27 These enzymes are oxygen dependent and there-
fore HIF-1a cannot be hydroxylated during hypoxia. In those
circumstances, HIF-1a accumulates and is translocated to
the nucleus. Here it binds to HIF-1b to form the active
transcription factor HIF-1.
Stabilisation of HIF-1a by the ODD domain is not only

caused by prolyl hydroxylases. HIF-1a becomes unstable
when bound to p53.28 Jab1 (jun activation domain binding
protein 1) directly interferes with the HIF-1a-p53 complex
and leads to stabilisation of the HIF-1a protein during
hypoxia.29

In addition to it regulation by stabilisation, HIF-1a is also
regulated at the translational level. Recently, internal ribo-
some entry site (IRES) sequences were detected in the
promoters of various hypoxia inducible genes, such as VEGF
and HIF-1.30 31 During hypoxia, the translation of classic cap
dependent mRNA transcription is reduced, and only mRNA
containing an IRES sequence will be translated. To become
active, HIF-1a complexes with HIF-1b. The HIF-1 complex
can bind to hypoxia response element (HRE; 59-RCGTG-39)
sequences in the promoter of HIF-1 target genes to initiate
gene expression.32 Many genes regulated by HIF-1a are
involved in several adaptive pathways including metabolism,
angiogenesis, and survival to overcome hypoxic stress.1

However, in the presence of different environmental factors
HIF-1 is involved in apoptosis.33

APOPTOSIS
Cells encountering environmental stress can undergo apop-
tosis. The characteristics of apoptosis are chromatin con-
densation, membrane blebbing, phosphatidylserine exposure
on the cell surface, cytoplasmic shrinkage, the formation of
apoptotic bodies, and DNA fragmentation.34 Apoptosis is an
energy dependent process, in contrast to necrosis, which also
occurs in the absence of ATP.35 Apoptosis is regulated by a
cascade of proteins called caspases. Caspases are the
apoptosis executor proteins and are present as pro-forms in
all cells. After cleavage, caspases become active and initiate
pathways leading to apoptosis.
The signalling pathway leading to programmed cell death

is fine tuned by positive and negative regulators, and a tight
balance between these factors decides whether the cell
undergoes apoptosis or survives. Proteins that can shift the
balance towards survival are the antiapoptotic proteins Bcl-2
and Bcl-xL, whereas the proapoptotic proteins Bax, Bad, Bak,
and Bid induce programmed cell death.36

‘‘Apoptosis is regulated by a cascade of proteins called
caspases’’

An important regulator of apoptosis after DNA damage is
the p53 protein. After DNA damage, p53 can induce the Bax
and Bak proteins, which regulate the release of cytochrome C
from the mitochondria, thereby initiating the cascade leading
to apoptosis.37

After the induction of apoptosis by hypoxia, cytochrome C
is released into the cytoplasm (fig 1). Cytochrome C binds to
the apoptotic protease activating factor 1 (Apaf-1).38 Apaf-1
activates caspase 9, which in turn cleaves caspases 3 and
6,38 39 leading to cell death.
In addition to intrinsic apoptotic pathways, extrinsic

pathways have been identified that can initiate and execute
the cell death process. Apoptosis by extrinsic pathways is
initiated by death ligands, such as the Fas ligand or tumour
necrosis factor a,40 leading finally to the activation of
caspase 8 and caspase 3.41

HYPOXIA AND APOPTOSIS
Hypoxia can induce apoptosis by causing hyperpermeability
of the inner mitochondrial membrane, which leads to the
release of cytochrome C (fig 1). The most direct induction of
hypoxia induced apoptosis is the inhibition of the electron
transport chain at the inner membrane of the mitochondria
(fig 1). The lack of oxygen inhibits the transport of protons
and thereby causes a decrease in the membrane potential.
The reduction of mitochondrial derived ATP causes activation
of Bax or Bak, leading to cytochrome C release into the
cytosol.7 Hence, fibroblasts of mice lacking Bax and Bak
genes are resistant to oxygen deprivation induced apoptosis.35

In addition to energy deprivation, radical formation, in
particular reactive oxygen species (ROS) generation, con-
tributes to hypoxia induced apoptosis. It has been reported
that the activation cascade resulting from ROS in human
neuroblastoma cells is different from classic mitochondrial
mediated apoptosis. In this case, the initiator caspase 9 is
cleaved directly to the active form by caspases 3 and 12,
without the involvement of cytochrome C in response to
hypoxia.42 It is only after cleavage of caspase 9 that
mitochondrial permeability is increased, which then results
in the activation of Apaf-1.43

A third mechanism by which hypoxia can induce apoptosis
is the activation of c-Jun NH2-terminal kinase (JNK), also
termed stress activated protein kinase (SAPK). This mechan-
ism has been reported in melanoma cells. JNK/SAPK is
involved in the process of apoptosis,44 because dominant
negative mutants of JNK/SAPK inhibited hypoxia induced
apoptosis. Wild-type JNK/SAPK had a slight proapoptotic
effect. Inhibiting JNK/SAPK at normoxia had no effect on
apoptosis.45

In contrast to the proapoptotic effects of hypoxia, cells can
become resistant to apoptosis during hypoxia. Dong et al
showed that cells treated with a strong apoptosis inducer,
staurosporine, were less sensitive to apoptosis in severe
hypoxia (near 0% oxygen) than when oxygen levels are
normal.46 Death resistance of hypoxic cells takes place on at
least two levels: in the mitochondria and in the cytosol. In
staurosporine treated cells, translocation of the proapoptotic
protein Bax to the mitochondria was suppressed during
hypoxia. Accumulation of Bax in the mitochondria caused
the release of cytochrome C into the cytosol, which was
strongly reduced in the hypoxic environment. This prohibited
the cascade leading to cell death. Bax translocation was
suppressed as a result of increased concentrations of the
inhibitor of apoptosis protein 2 (IAP-2). Resistance to
apoptosis was strongly abolished by decreased availability
of IAP-2 caused by immunodepletion. IAP-2, together with
the factors that prevent Bak translocation and preserve
mitochondrial integrity, may facilitate cell survival during
hypoxia.46 Increased IAP-2 expression is induced by the
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hypoxia induced transcription factor nuclear factor kB (NF-
kB), and its induction is independent of HIF-1.47 An
alternative mechanism for increased IAP-2 synthesis may
be the activation of IRES, which are present in the promoter
of XIAP, another IAP gene.48 As described above for HIF-1,
the IRES may be responsible for increased translation of
XIAP mRNA during hypoxia, thereby preventing the cell from
undergoing apoptosis.31

In addition, VHL has been shown to have a protective role
in chemical induced apoptosis in renal cells. Cells lacking
VHL are sensitive to apoptosis, but reintroduction of VHL
rendered the cells resistant to apoptosis. Prevention of
apoptosis by VHL may act via Bcl-2 dependent pathways,
because downregulation of Bcl-2 expression by antisense
oligonucleotides in VHL positive cells made them sensitive to
apoptosis.49

‘‘Death resistance of hypoxic cells takes place on at least
two levels: in the mitochondria and in the cytosol’’

Both severe hypoxia and the presence of ATP are required
to induce apoptosis. Oxygen levels above 0.5% prevent cells
from undergoing apoptosis.9 Cell survival under mild hypoxia
is mediated by phosphoinositide-3 kinase (PI3K) and its
downstream target Akt.50 The PI3K/Akt signalling pathway is
important for cell survival and proliferation because it
prevents Bad from inhibiting the antiapoptotic activity of
Bcl-xL. Akt induces NF-kB, which leads to cell survival.50 The
importance of the PI3K/Akt pathway is emphasised by the
fact that tumours that overexpress HER-2/neu, thereby
activating the PI3K/Akt pathway, become resistant to
apoptosis. Resistance to apoptosis is mediated by the PI3K/
Akt pathway and can be reversed by inhibitors such as
LY294002 and wortmannin.51

HIF-1 AND APOPTOSIS
HIF-1a is involved in hypoxia induced apoptosis. Hypoxia in
combination with hypoglycaemia reduces proliferation and
increases apoptosis in wild-type embryonic stem (ES) cells,
but not in ES cells with inactivated HIF-1a genes. The
reduced rate of hypoxia induced apoptosis may explain why
tumours from HIF-1a knockout ES cells grow faster than

wild-type cells.12 Two homologues of HIF-1a are known—
HIF-2a and HIF-3a—and it was thought that HIF-2a or HIF-
3a might substitute the function of HIF-1a in cells lacking
HIF-1a. However, HIF-2a deficiency does not protect cells
from hypoxia induced apoptosis as HIF-1a does.52 Whether
HIF-3a induces apoptosis has not yet been studied.
HIF-1a can induce apoptosis via two mechanisms. First, it

can increase the stability of the product of the tumour
suppressor gene p53. In environmental stress or DNA
damage, p53 induces programmed cell death by regulating
proteins such as Bax, or it can cause growth arrest, which is
mediated by p21. Recently, it was shown that HIF-1a directly
binds to the p53 ubiquitin ligase mdm2 both in vivo and in
vitro, thereby stabilising p53.53 However, another report
showed a direct binding of p53 to the ODD domain of HIF-
1a.54 HIF-1a interacts with wild-type p53 but not with
tumour derived mutant p53.55 This may reflect a difference in
behaviour of HIF-1a in physiological circumstances com-
pared with a tumour environment.
Second, in hypoxic perinecrotic regions of tumours, the

proapoptotic proteins BNIP3 (BCL2/adenovirus E1B 19 kDa
interacting protein 3) and NIX, a BNIP3 homologue, are
overexpressed at the transcriptional level.56 BNIP3 is upregu-
lated by hypoxia in human carcinoma cell lines, endothelial
cells, and macrophages. Overexpression of BNIP3 in Rat-1
fibroblasts and breast cancer cells (MCF7) induces apoptosis
by binding to and inhibiting the antiapoptotic proteins Bcl-2
and Bcl-xL.57 Hypoxia induced apoptosis mediated by BNIP3
may be HIF-1a dependent because cells lacking HIF-1 cannot
produce large amounts of BNIP3 and a reduced cell death
rate is seen.58 The BNIP3 promoter contains an HRE so that
HIF-1 can induce the expression of this gene.59 Apart from
initiating apoptosis, BNIP3 may also be involved in inducing
necrosis. The disruption of the mitochondria by BNIP3 is
different from the action of other proapoptotic proteins: the
cell death induced by BNIP3 resembles necrosis in fibro-
blasts.60 BNIP3 may prove to be an important protein for the
elimination of damaged cells by undergoing rapid cell death.
HIF-1a does not only induce, but may also prevent,

apoptosis. In pancreatic cancer cell lines, high concentrations
of HIF-1a were seen at normoxia, and these may have been
caused by activation of the PI3K/Akt pathway, rather than

Figure 1 Schematic representation of
signalling pathways induced by
hypoxia leading to apoptosis. The
involvement of HIF-1a is depicted in
these pathways. The solid lines indicate
a direct interaction, the dashed line an
indirect interaction. Apaf-1, apoptotic
protease activating factor-1; BNIP3,
BCL-2/adenovirus E1B 19 kDa
interacting protein 3; HIF-1, hypoxia
inducible factor 1; IAP-2, inhibitor of
apoptosis protein 2; JNK, c-Jun NH2

terminal kinase; SAPK, stress activated
protein kinase.
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hypoxia. These cells showed more resistance to apoptosis
caused by hypoxia and glucose deprivation than did cell lines
with low HIF-1a expression at normoxia.14 The reduced
sensitivity to apoptosis was seen in acute hypoxia; the
influence of chronic hypoxia was not studied. In addition,
Chen et al recently reported that dominant negative HIF-1a
rendered pancreatic cancer cells sensitive to apoptosis and
growth inhibition by hypoxia and glucose deprivation.61

It can be concluded that HIF-1 plays a role in hypoxia
induced apoptosis, but that the exact mechanism by which it
acts is not yet clear. The effect of HIF-1 might be influenced
by other factors, which may determine whether HIF-1 shifts
the balance towards apoptosis or acts as an antiapoptotic
factor.62

HYPOXIA, HIF-1, AND APOPTOSIS IN TUMOURS
Hypoxia is commonly found in solid tumours of various
origins. Selection by hypoxia renders tumour cells resistant to
hypoxia induced apoptosis.63 These cells with a reduced
apoptotic potential may also explain the resistance of many
solid tumours to cancer treatment.11

In carcinomas of the uterine cervix, proliferation and the
state of hypoxia appeared to be two independent predictors
of outcome.64 In the hypoxic cell compartment, cells are in
growth arrest. However, small numbers of proliferating cells
could be seen.65 66 In one study, an increased overlap was seen
between hypoxia and proliferating cells after radiotherapy in
canine tumours.67 In human soft tissue sarcomas, hypoxic
tumours contained the fastest proliferating tumour cells.68

The use of immunohistochemistry to investigate proliferation
patterns and hypoxic profiles may identify clinically relevant
cell populations in solid tumours with a more aggressive
phenotype.69

The prognostic impact of hypoxia related apoptosis is not
yet clear. The prognostic value may differ between various
histological tumour types from different organs. For example,
in squamous cell carcinomas of the uterine cervix, a high
apoptotic index indicated poor prognosis,70 71 whereas in
cervical adenocarcinomas a high apoptotic index after
treatment indicated a good prognosis.72 73 One problem might
be the difficult distinction between spontaneous apoptosis (a
common phenomenon in tumours) and treatment induced
apoptosis.
HIF-1a is involved in cell proliferation and apoptosis, and

HIF-1a overexpression, as detected by immunohistochemis-
try, is often found in different solid tumours.74 75 In lymph
node negative patients with breast cancer, HIF-1a over-
expression appeared to be a negative prognostic factor and
correlated with increased proliferation as measured by Ki-
67.74 76 In oral squamous cell cancer, HIF-1a overexpression
correlated with a low apoptotic index,77 but in invasive breast
cancer, the opposite correlation was described.78 No relation
between the proliferation of lung tumours and HIF-1 (a and
b) was seen when the expression of cyclin A and the phases
of the cell cycle were analysed in relation to the presence
of HIF-1a. However, a correlation was seen between HIF-1
expression and the apoptotic index.79 This correlation
between HIF-1a expression and apoptosis was also seen in
patients with non-small cell lung carcinomas, studying the
proapoptotic factors caspase 3, Fas, and the Fas ligand.80

‘‘Because hypoxia inducible factor 1 (HIF-1) is related to
resistance to chemotherapy and radiotherapy, targeting
HIF-1 may help improve antitumour treatment’’

The relation between the antiapoptotic protein Bcl-2 and
the overexpression of HIF-1 is controversial. In non-small cell
lung cancer, HIF-1 expression showed a significant inverse

association with Bcl-2 expression.81 Bcl-2 overexpressing lung
carcinomas have a relatively good survival82; however, in a
breast carcinoma study the opposite was observed—HIF-1
and Bcl-2 had a strong positive correlation.78 The differences
may be explained by tissue specific regulation of hypoxia
induced apoptosis. A more aggressive clinical behaviour was
seen in tumours overexpressing HIF-1a, and this may be
related to resistance to apoptosis. Because HIF-1 is related to
resistance to chemotherapy and radiotherapy,83 84 targeting
HIF-1 may help improve antitumour treatment. In this case,
the inhibition of HIF-1 may not be sufficient as a treatment,
but targeting HIF-1 may decrease resistance to the conven-
tional treatment.

CONCLUSION
Severe and prolonged hypoxia may initiate apoptosis,
whereas under acute and mild hypoxia cells may adapt to
this environmental stress and will survive. Fine tuning of the
regulation of apoptosis by hypoxia is influenced by HIF-1 in
combination with many other factors. The role that the key
regulator of hypoxia, HIF-1, plays in this hypoxia mediated
programmed cell death is not entirely clear yet. HIF-1 can
initiate hypoxia mediated apoptosis by increasing the
expression of Bcl-2 binding proteins—BNIP3 and NIX—
thereby inhibiting the antiapoptotic effect of Bcl-2. A
different mechanism of inducing apoptosis is by stabilisation
of wild-type p53 by HIF-1. If the cell already has a p53 gene
mutation, hypoxia induced apoptosis is prevented. However,
hypoxia by itself can also prevent apoptosis by inducing the
expression of the antiapoptotic protein IAP-2. HIF-1 may also
have an antiapoptotic function because cells with high
amounts of HIF-1 are more resistant to hypoxia induced
apoptosis.
Although many studies have focused on the role of HIF-1

in angiogenesis, it is clear that the function of HIF-1 in the
regulation of apoptosis by hypoxia deserves more attention.

Take home messages

N Severe and prolonged hypoxia may initiate apoptosis,
whereas cells often adapt to acute and mild hypoxia
and survive

N The key regulator of hypoxia induced apoptosis is
hypoxia inducible factor 1 (HIF-1), which acts in
combination with many other factors, and can either
induce or inhibit apoptosis

N HIF-1 can initiate hypoxia mediated apoptosis by
increasing the expression of Bcl-2 binding proteins
(BNIP3 and NIX), thereby inhibiting the antiapoptotic
effect of Bcl-2, or by stabilising wild-type p53—if the
cell already has a p53 gene mutation, hypoxia induced
apoptosis is prevented

N Hypoxia by itself can also prevent apoptosis by
inducing the expression of the antiapoptotic protein
IAP-2

N HIF-1 may also have an antiapoptotic function because
cells with high amounts of HIF-1 are more resistant to
hypoxia induced apoptosis

N Further investigations into the function of HIF-1 in the
regulation of apoptosis by hypoxia are required
because understanding the regulation of apoptosis
during hypoxia and the mechanisms of resistance to
apoptosis might lead to more specific treatments for
solid tumours
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Translating the in vitro data to the clinic is still rather
complex because of the dual role of HIF-1. In addition,
different cell types may influence the balance of apoptosis.
A better understanding of the regulation of apoptosis
by hypoxia in solid tumours may enhance insight into
tumour behaviour and the effect of hypoxia on antitumour
treatments.
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